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AI as Eutopia or Dystopia?



The trillion-dollar, highly 
political scientific 
questions

• Does exposure to fine particulate 
matter, even at low levels, cause an 
increase in hospitalizations?

• Does exposure to wildfire cause 
cancer?

• Is air pollution from coal-fired power 
plants more toxic than air pollution 
from other sources?



1. The Causal Framework: seeing versus 
doing versus imagining



1. Associational
Seeing 🡪 What is: How would be seeing X change my belief in Y?
2. Interventional
Doing 🡪 What if: What if I do X? 
3. Counterfactual imagining
Imagining -> Why? What if I acted differently? 



Seeing: Is exposure to PM
2.5

 below the 
NAAQS (12 μg/m3 ) associated with an 
increased mortality risk?
Doing: If I intervene by implementing a 
new air quality policy, how many lives 
would it save?
Imagining: Let’s imagine a world where 
we can adapt to extreme weather 
events. What will be the positive 
consequences to society?



DATA

Data integration of over 
20 government data 
repositories

• All Medicare participants (n=67,682,479) in 
the continental United States from 2000 to 
2021 

• Outcomes: all-cause mortality and cause 
specific hospitalization

• Individual level information: date of death, 
age of entry, year of entry, sex, race, whether 
eligible for Medicaid (proxy for SES)

• Zip code of residence and other covariates
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Causal Reasoning AI for Policy Decisions   (9 TB of data)   

Seeing

Doing

Imaging



What are the unique challenges to answering these 
questions?

• Misaligned data
• Multiple diseases that naturally interact 
• Multimodal  data
• Spatial and temporal
• Spurious correlations (confounding)
• Massive, noisy data
• Causal effects are hard to detect

• Interpretability
• Reproducibility
• Responsability
• Uncertainty

Are not negotiable



Artificial Intelligence in Air Pollution 
Exposure Estimation
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 Machine Learning Methods
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Ensemble and Hybrid 
Models

Neural Networks

Tree-Based Models



Neurips 2019



Di Q, Amini H, Shi L, Kloog I, Silvern R, Kelly J, et al. 2019. An ensemble-based model of PM2.5 concentration across the 
contiguous United States with high spatiotemporal resolution. Environ Int 130:104909, 10.1016/j.envint.2019.104909



2. Causal Inference in Artificial 
Intelligence:
Exploring Potential Outcomes for 
Decision-Making



 /

Approaches to Causal Inference

Causal Inference in Artificial Intelligence: Foundations and Frameworks5

•Can model and analyze multiple 
interventions and causal pathways 
simultaneously.

• Identify confounders, mediators, and 
colliders explicitly to guide unbiased causal 
estimation.

•Facilitate discovery of new causal 
relationships and simulate hypothetical 
interventions across complex systems.

• Ideal for exploring complex and 
interconnected causal structures.

•Typically estimates the effect of a single, 
pre-specified intervention at a time.

•Relies on constructing or mimicking 
randomized experiments using statistical 
adjustments such as matching or 
regression.

•Focuses on estimating average treatment 
effects or individual causal effects.

•Designed for targeted and specific causal 
inquiries.

Causal Graph ModelsPotential Outcomes Model VS



Timeline of Bayesian, Causal, and AI Developments in Inference

1

Late 90s: Before Causal 
Inference
Seeing (with uncertainty)

Bayesian regression.
Bayesian Model 
Averaging

2000s: Bayesian + 
Causal
Doing (with uncertainty)
Potential outcome 
framework
Uncertainty in the 
confounder selections.

2010s: Bayesian + 
Causal + ML
Doing (and learning)
GPS, Causal Forests,

2023+:  AI 
Imagining 
Foundational 
models 

2025+: Enabling AI/Causal 
FMs

Imagining with uncertainty

1 3 52 4 ?

2050+:  AGI 



Wang C, Parmigiani G, Dominici F (2012) Bayesian Effect Estimation Accounting for Adjustment 
Uncertainty. Biometrics, (68)3:681-689. 

Wang C, Dominici F, Parmigiani G, Zigler CM (2015) Accounting for Uncertainty in Confounder 
and Effect Modifier Selection when Estimating Average Causal Effects in Generalized Linear 
Models. Biometrics

2000s: Bayesian + Causal
Doing (with uncertainty)
Potential outcome framework
 Uncertainty in the confounder 
selections.



JASA 2014

2000s: Bayesian + Causal
Doing (with uncertainty)
Potential outcome framework
Uncertainty in the confounder 
selections.



2010-2020s: Bayesian + Causal + ML
Doing (and learning)



Decision Making and 
Reinforcement learning   



3. The impact to policy





Lowering exposure from 12 to 9 unit 🡪 5 % mortality reduction among Black Americans; 
2.5% mortality reduction among White Americans

Doing



How my lab has impacted this decision

April 2023

Nov 2023

Dec 2023, COP28 Opening day, Kerry talk about my 
study: Climate Crisis is a Health Crisis.

Data Science  Policy Impact
February 2024

✔ Cleaner Air
✔ Lives Saved
✔ Less GHG

A lot of seeing 
and doing 



On February 7, 2024, the U.S. Environmental Protection Agency (EPA) 
announced a final rule to strengthen the nation's National Ambient Air 
Quality Standards (NAAQS) for fine particle pollution (12 🡪 9 mg/m3)



4. Counterfactual Imagining: A role for 
AI foundation model



The potential of AI for Climate 
Adaptation

• Climate change brings more extreme weather, wildfires, 
and shifting disease patterns 

• Understanding and mitigating health impacts is 
complicated – e.g. heatwaves affecting vulnerable 
people, wildfire smoke causing respiratory illnesses

• AI’s Promise: AI can analyze unprecedentedly massive 
multimodal data to find generalizable patterns and 
make predictions more accurately than traditional 
methods

• This can inform early warnings and adaptive 
responses (e.g. alerting hospitals of an incoming 
heat-related patient surge)



2023+:  AI
Imagining 
Foundational models 

1. Pre-trained on the entire US health care system x environmental data x societal data
2. It produces unified embeddings that capture the complex spatiotemporal relationships 
between climate stressors, socioeconomic variables, and health outcomes. 
3. We evaluate the model on benchmark downstream tasks, i.e., health outcomes 
interpolation, extrapolation, downscaling, and forecasting
4.  We implement “what-if” scenario forecasting for climate adaptation using synthetic 
ground-truth data to validate counterfactual predictions when any input exposure is 
altered. 



Towards a One-of-a-Kind geo-AI for Healthy Climate 
Adaptation 

- Data Loaders We will use data loaders created directly from metadata, to hande 
heterogeneity in data formats, scales, and resolutions

- Metadata Extractors We will employ and develop new extractors for describing and 
sharing scientific data that can automatically extract metadata from datasets to respect  
FAIR principles

- Semantic Layer We will implement a semantic layer to bridge the gap between raw data 
and high-level analytical processes by providing context, meaning, and relationships 
between data elements. This layer will facilitate the efficient harmonization of variables by 
capturing their underlying semantics



ClimaCare: Downstream Tasks
● Spatiotemporal Downstream Tasks:

○ Spatial Interpolation
○ Spatial Extrapolation
○ Forecasting

● What-If Downstream Tasks:
○ ERC Estimation
○ Enhanced Causal Inference

What-If Downstream Tasks:
ERC Estimation
Enhanced Causal Inference



Poster session 2 (Wednesday)



● Grand Challenge #1: We need to scale causal reasoning to the size and 
complexity of massive data. 

● Grand Challenge #2: We need to learn how to use real world data to 
understand the consequences of complex actions and strategies

● Grand Challenge #3: We need to learn the precise pathways between 
actions and their consequences.

+

Uncertainty 
 

2025+: Enabling AI/Causal FMs
Imagining with uncertainty
Grand challenges.



2050: Let’s imagine a world where we have 
solved causal reasoning
• AI agents are everywhere

• Is this a better future?



Evaluating the Environmental 
Impact of Hyperscale Data 
Centers in the U.S.

Joint work with Gianluca Guidi, Tiziano Squartini,
Callaway Sprinkle, Jonathan Gilmour Kevin Butler, Eric Bell,
Scott Delaney, Falco J. Bargagli-Stoffi





403 Hyperscale 
data centers and 

3318  energy 
supplier power 
plants in the US 

(May 2024 to April 
2025) 



Scientific questions
1. What are the electricity consumption, sources, and attributable 
CO2 emissions of those 403 data centers?

2. What is the fuel mix of the power plants supplying electricity to 
data centers?

3. Which states have the highest CO2 emissions attributable to data 
centers?

Hint: With a data pipeline that can answer those questions, we make 
informed decisions, such as: Where should I place a data center? Where 
should I intervene on the power grid? How can we decarbonize this sector?



Evaluating the Environmental Impact of Hyperscale Data Centers in the U.S.12
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Materials and Methods

Carbon intensity 

was computed as 

grams of CO2 

emitted per 

kilowatt-hour 

consumed.

This computation 

was performed at 

various geographic 

levels.

Carbon Intensity 
Computation

Each HDC was 

assigned to its 

balancing authority 

and corresponding 

power plants.

CO2 emissions were 

estimated using an 

energy 

generation-weighte

d model and EPA 

emission factors.

CO2 Emissions 
Estimation

Annual electricity 

consumption was 

calculated by 

multiplying the 

power capacity, 

hours per year, and a 

utilization rate of 

66.3%.

The utilization rate 

was determined 

empirically.

Electricity 
Consumption 

Calculation
Missing power 

capacities were 

estimated using a 

Gradient Boosted 

Regression Tree 

model.

Power Capacity 
Estimation

Our analysis began 

with compiling and 

validating a dataset 

of 403 HDCs.

This was achieved 

using private data 

providers, web 

scraping, and 

satellite imagery.

Dataset 
Compilation and 

Validation







Evaluating the Environmental Impact of Hyperscale Data Centers in the U.S.7

Carbon Emissions Attributable to Hyperscale Data Centers

Significant State 
Contributions

Ohio followed with 5.82 million 

metric tons of CO2 emissions 

attributable to HDCs.

5.82M

Highest Emissions by 
State

Virginia had the highest CO2 

emissions attributable to HDCs, 

amounting to 24.46 million 

metric tons.

24.46M

Increase Since 2018

This is more than five times the 

total emissions reported for 

HDCs in 2018.

5x

Proportion of US 
Carbon Emissions

This represents approximately 

1.10% of the total US carbon 

emissions from electricity 

consumption in 2023.

1.10%

Total CO2 Emissions 
from HDCs

The total CO2 emissions 

attributable to the 403 

hyperscale data centers (HDCs) 

amounted to 52.69 million metric 

tons.

52.69M

•52.69 M represents the annual CO₂ emissions of a 
major U.S. city or a sizable portion of the U.S. aviation 
industry.





AI as Eutopia or Dystopia?

The EPA’s 2024 regulatory analysis projects 
that new standards for coal (and some new 
gas) power plants will cut about 55 million 
metric tons per year

The total CO2 emissions attributable to 
the 403 hyperscale data centers (HDCs) 
amounted to 52.69 million metric tons.

.



Role of Causal Reasoning AI  In Creating A Sustainable 
Future

1. Huge opportunity for 
causal reasoning AI to 
impact policy

2. Still a lot of work to 
develop AI that can 
reasonate about 
causality and with 
uncertainity

3. Responsible AI is playing 
an increasing important 
role



The world is facing enormous challenges use your 
expertise to solve them! 

Livable Cities Global Prosperity Human Health

Clean EnergyBiodiversityDisaster Response



• Thank you



AI systems require causal intelligence, which I broadly construe as the cognitive ability to learn and exploit causal 
relationships. It has become increasingly clear that understanding causal intelligence is fundamental to advancing AI and 
data science.

• Interpretability

• Reproducibility

• Responsability

• Uncertainty quantification
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2010s: Bayesian, Causal, and Machine Learning Synergy

4 Evolution and Integration of Bayesian, Causal, and AI Methods in Data Science

Significant technical progress was 
made to harmonize ML with causal 
and Bayesian frameworks, as 
demonstrated by researchers like 
Xiao, Falco, and Chanmin.

Harmonizing Frameworks 
through Research

Machine learning addressed complex 
nonlinear patterns and 
high-dimensional data challenges.

Addressing Complex Data 
Challenges

Innovations included Generalized 
Propensity Scores (GPS), Causal 
Forests, Superlearner algorithms, and 
double robustness approaches.

Innovations in Causal and 
Machine Learning Techniques

Machine learning techniques were 
integrated with Bayesian and causal 
methods.

Integration of Machine 
Learning with Bayesian and 
Causal Methods



2000s: Integration of Bayesian and Causal Inference

 / Evolution and Integration of Bayesian, Causal, and AI Methods in Data Science3
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Despite these advances, 
applications were mostly limited 
to relatively simple models.

Limitations in 
Complexity

Bayesian uncertainty was 
incorporated into 
confounder selection 
processes.

Incorporating 
Bayesian 
Uncertainty

Confounding adjustment 
became more flexible 
through propensity score 
methods.

Flexible 
Confounding 
AdjustmentEnabled clearer, more 

explicit assumptions 
about causal 
relationships.

Explicit Causal 
Assumptions

The potential outcome 
framework bridged 
Bayesian statistics with 
causal inference.

Bridging Bayesian 
and Causal 
Inference


