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The trillion-dollar, highly
political scientific
guestions

* Does exposure to fine particulate
matter, even at low levels, cause an
increase in hospitalizations?

* Does exposure to wildfire cause
cancer?

* |s air pollution from coal-fired power
plants more toxic than air pollution
from other sources?




1. The Causal Framework: seeing versus
doing versus imagining
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1. Associational
Seeing [| What is: How would be seeing X change my belief in Y?

3. Counterfactual imagining
Imagining -> Why? What if | acted differently?



Point-Counterpoint
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Seeing: Is exposure to PM, . below the
NAAQS (12 pg/m?) associated with an
increased mortality risk?

Doing: If | intervene a
new air quality policy, how many lives
would it save?

Imagining: Let’s imagine a world where
we can adapt to extreme weather
events. What will be the positive
consequences to society?



DATA

» All Medicare participants (n=67,682,479) in
the continental United States from 2000 to

Data integration of over 2021

20 government data * Outcomes: all-cause mortality and cause
. . specific hospitalization

repositories

* Individual level information: date of death,
age of entry, year of entry, sex, race, whether
eligible for Medicaid (proxy for SES)

» Zip code of residence and other covariates



Causal Reasoning Al for Policy Decisions (9 TB of data)

EXPOSURES AND f;;,’ = 2 ﬂ HEALTH Nealiars
INTERVENTIONS (EOR 1) g - & OUTCOMES (Y) mortality rate by
Ay e T A o\l county (average
3 2000-2012)

PM, s exposure levels
by county (average
2000-2012)

DATA SOURCES

Criteria air pollutants

EPA AQS daily average of PM, ., ozone, NO,,
1995-2015;

Daily 1km x 1km predictions of PM, ., ozone,
NO,. 2000-2014

Seeing

Methane Fracking wells and disposal wells

1km x 1km predictions at 3-day intervals, Drillinginfo database with well location o

2009-present and depth, daily production DATA SOURCES D O I n g
Weather Traffic Medicare

NOAA daily estimates (temperature, Annual traffic counts and density from 28 million per year, 1999-2015

precipitation, humidity, ...) on a 0.3 grid the Department of Transportation Medicaid

Power plants Residential community green space 28 million per year, low income, 2010-2011 o

EPA AMPD daily emissions, 1995-2015 NASA vegetation index on a 250m? grid Aetna I m a g I n g
Coal mines Factrories and industrial sites 40 million, all ages, above-average income,

MSHA location and producting pits, 1970-2015 Geocoded locations of businesses 2008-2016

DATA SOURCES

Individual demographics

Age, sex, race, ZIP code of residence
Individual medical history

LY CONFOUNDERS
o= (X)

Poverty prevalence Previous diagnoses, medications prescribed
by county (average 2
2000 and 2010) ZIP code level variables

Income, education, demographics, employment, household size
County-level variables
Crime, smoking, BMI




What are the unique challenges to answering these
guestions?

 Misalighed data

* Multiple diseases that naturally interact
* Multimodal data

* Spatial and temporal

* Spurious correlations (confounding)

* Massive, noisy data

* Causal effects are hard to detect

* Interpretability

* Reproducibility _
* Responsability - Are not negotlable
* Uncertainty
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Machine Learning Methods
Tree-Based Models

Neural Networks

Ensemble and Hybrid
Models

4/
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Figure 1: A decomposition of different
types of uncertainty by the Bayesian
Nonparametric Ensemble (BNE).



A Average Concentrations of PM,

14

Di Q, Amini H, Shi L, Kloog |, Silvern R, Kelly J, et al. 2019. An ensemble-based model of PM2.5 concentration across the
contiguous United States with high spatiotemporal resolution. Environ Int 130:104909, 10.1016/j.envint.2019.104909



2. Causal Inference in Artificial
Intelligence:

Exploring Potential Outcomes for
Decision-Making



Approaches to Causal Inference

Potential Outcomes Model VS Causal Graph Models

* Typically estimates the effect of a single,
pre-specified intervention at a time.

* Relies on constructing or mimicking
randomized experiments using statistical
adjustments such as matching or
regression.

* Focuses on estimating average treatment
effects or individual causal effects.

* Designed for targeted and specific causal
inquiries.

5 / Causal Inference in Artificial Intelligence: Foundations and Frameworks

* Can model and analyze multiple
interventions and causal pathways
simultaneously.

* Ildentify confounders, mediators, and
colliders explicitly to guide unbiased causal
estimation.

* Facilitate discovery of new causal
relationships and simulate hypothetical
interventions across complex systems.

* Ideal for exploring complex and
interconnected causal structures.



Timeline of Bayesian, Causal, and Al Developments in Inference

Late 90s: Before Causal

0 2

models

© o0 o

2000s: BayIsian +




Wang C, Parmigiani G, Dominici F (2012) Bayesian Effect Estimation Accounting for Adjustment
Uncertainty. Biometrics, (68)3:681-689.
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Wang C, Dominici F, Parmigiani G, Zigler CM (2015) Accounting for Uncertainty in Confounder

and Effect Modifier Selection when Estimating Average Causal Effects in Generalized Linear
Models. Biometrics



Uncertainty in Propensity Score Estimation: Bayesian Methods for
Variable Selection and Model Averaged Causal Effects |, 15014
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The Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25)

Optimizing Heat Alert Issuance with Reinforcement Learnings

Ellen M. Considine*', Rachel C. Nethery', Gregory A. Wellenius?,
Francesca Dominici', Mauricio Tec*!3

I. BROACH Environment / Simulator II. Heat Alerts Policy Optimization and Assessment
Sampling of Weather Bayesian Hierarchical Constrained Reinforcement Post-hoc Contrastive
Trajectories (Exogenous) Model of Hospitalizations Learning and Evaluation Explanation
[ Fit on observational data Done separately Alert Budget Where does the Considering county
& - s D Flent Thresh(;ld RL policy characteristics
perform better

Feature A
(-) than the

/ e JYYS :Environment; National
N allowed to vary L Reward, State| : Weather
Can augment with data = = by time as well D, & Svesssisaanssesees } | Service policy?
from the same region Y —" as by location lg: g @ @

Figure 1: Overview of the heat alerts RL framework.
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3. The impact to policy



The NEW ENGLAND
JOURNAL of MEDICINE

Air Pollution and Mortality at the Intersection of Race and Social Class

Kevin P. Josey, Ph.D., Scott W. Delaney, Sc.D., J.D., Xiao Wu, Ph.D., Rachel C. Nethery, Ph.D., Priyanka DeSouza, Ph.D., Danielle Braun, Ph.D., and Francesca Dominici, Ph.D.

AIR POLLUTION, MORTALITY, RACE, AND SOCIAL CLASS

Table 1. Characteristics of the Medicare Cohort, 2000 through 2016.*
Characteristic Full Cohorty Black Persons White Persons
Higher Incomei: Low Income§ Higher Income:: Low Incomef
Persons — no. (% of full cohort) 73,129,782 4,872,714 1,671,776 56,422,414 4,989,457
(100) (6.7) (2.3) (77.2) (6.8)
Person-yr — no. (% of total person-yr) 623,042,512 37,862,780 14,886,928 483,479,863 48,247,908
(100) (6.1) (2.4) (77.6) (7.7)
Deaths — no. (% of total deaths) 29,467,648 1,488,555 1,154,227 20,773,208 4,769,240
(100) (5.1) (3.9) (70.5) (16.2)
Median follow-up time — yr 8.0 7.0 8.0 8.0 8.0
Age at entry — %
65-74 yr 80.6 86.2 77.4 80.4 72.7
75-84 yr 14.8 10.7 15.6 153 17:2
85-94 yr 4.2 2.5 6.2 4.0 9.0
=95 yr 0.4 0.6 0.8 0.3 1.1
Female sex — % 55.4 54.9 68.1 54.3 68.0
Medicaid eligible — % 11.6 0 100 0 100




Lowering exposure from 12 to 9 unit [0 5 % mortality reduction among Black Americans;
2.5% mortality reduction among White Americans

The NEW ENGLAND
JOURNAL of MEDICINE

Subpopulation: 4 Black, low income A White, low income

+ Black, higher income + White, higher income
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Figure 4. Differences in Mortality with Decreasing PM, ; Exposure among
Marginalized Subpopulations.

Shown are point estimates and 95% confidence intervals of the hazard ra-
tio for death comparing different levels of annual average PM, ; exposure
(12 pg per cubic meter vs. 11, 10, 9, or 8 yg per cubic meter) on average for
subpopulations defined in selected ways. Low income was defined as dual
eligibility for both Medicare and Medicaid. Confidence intervals were not
adjusted for multiplicity; therefore, they should not be used in place of hy-
pothesis testing.

T 5 OTRE N X
St. James, La., one of several Mississippi River towns dotted by chemical plants and oil refineries. William Widmer for The New York
Times




How my lab has impacted this decision

Data Science ) Policy E)  Impact

. Dec 2023, COP28 Opening day, Kerry talk about my
April 2023 . .. . .
study: Climate Crisis is a Health Crisis.

February 2024

Biden Administration Moves to
Tighten Limits on Deadly Air Pollution

A new rule would, for the first time in a decade, reduce emissions
of soot that disproportionately harm communities of color.

47 Th NEW ENGLAND
%/ JOURNAL of MEDICINE

Air Pollution and Mortality at the Intersection of Race and Social Class
K.P. Josey and Others | N Engl | Med 2023; 388:1396-1404

Nov 2023

Science

A lot of seeing L

. ¢ Cleaner Air
Mortality risk from United States coal and dol ng

electricity generation V Lives Saved
¢/ Less GHG




On February 7, 2024, the U.S. Environmental Protection Agency (EPA)
announced a final rule to strengthen the nation's National Ambient Air
Quality Standards (NAAQS) for fine particle pollution (12 0 9 mg/m3)

= Ty Biden Administration Moves to
7 EP A Lo Tighten Limits on Deadly Air Pollution

Agency

A new rule would, for the first time in a decade, reduce emissions
of soot that disproportionately harm communities of color.

Estimated Monetized Benefits, Costs, and Net Benefits

Associated with the Final Standard Levels in 2032 for th Gvethisartice &> []  LJes
the U.S. (2017$)
9/35 pug/m?
. $22 billion to
a
EEIELE $46 billion
CostsP $590 million

$22 billion to
$46 billion

Notes: We focus results to provide a snapshot of costs and benefits in 2032, using the
best available information to approximate social costs and social benefits recognizing
uncertainties and limitations in those estimates.

a The benefits are associated with two point estimates from two different epidemiologic
studies, and we present the benefits calculated at a real discount rate of 3 percent-

5The costs are annualized using a 7 percent interest rate.

Net Benefits




4. Counterfactual Imagining: A role for
Al foundation model



The potential of Al for Climate
Adaptation

 Climate change brings more extreme weather, wildfires,
and shifting disease patterns

* Understanding and mitigating health impacts is
complicated — e.g. heatwaves affecting vulnerable
people, wildfire smoke causing respiratory illnesses

* Al's Promise: Al can analyze unprecedentedly massive
multimodal data to find generalizable patterns and

make predictions more accurately than traditional
methods

* This can inform early warnings and adaptive

responses (e.g. alerting hospitals of an incoming
heat-related patient surge)




ClimaCare: A Foundation Model
for Healthy Climate Adaptation

Claudio Battiloro*T, James Kitch*T, Bret Nestor*',
Mauricio Tec!, Michelle Audirac, Danielle Braun,
Francesca Dominici

1. Pre-trained on the entire US health care _s_y_stem x environmental data x societal data

2. It produces unified embeddings that capture the complex spatiotemporal relationships
between climate stressors, socioeconomic variables, and health outcomes.
3. We evaluate the model on benchmark downstream tasks, i.e., health outcomes

interpolation, extrapolation, downscaling, and forecasting
4. We implement “what-if” scenario forecasting for climate adaptation using synthetic

ground-truth data to validate counterfactual predictions when any input exposure is
altered.



Towards a One-of-a-Kind geo-Al for Healthy Climate

Adaptation

County Level
Annual SDOH

5-year SDOH

Census-block level

10-year SDOH
Weather Data

Zip-code level

Healthdata - -

\ A

Individual-level

Health longitudinal Semantic Common Data
trajectories layers Formats
== = Metadata
= N extractors Discecs
5 S o L
N 7\7:”"'?." . 'J.-_ tl_ tf_ _ tn_ l l
- . = Universal PyTorch FAIR-adherent
data loaders data




ClimaCare: Downstream Tasks

A Exposure to PM, ¢
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Poster session 2 (Wednesday)

The Relativity of Causal Knowledge

Gabriele D’Acunto!? Claudio Battiloro?

!Information Engineering, Electronics and Telecommunications Dept., Sapienza University, Rome, Italy
National Inter-University Consortium for Telecommunications (CNIT), Parma, Italy
3Biostatistics Dept., Harvard University, Cambridge, MA, USA

Conceptually, the relativity of causal knowledge can drive
a paradigm shift in how causality is typically understood
in AI/ML. By stripping causality of its oracular and abso-
lute meaning, the relativity of causal knowledge situates
it within a different ontological setting, where truth is not
monolithic but emerges inevitably and relatively from a
set of relationships. This is mathematically formalized by
the path-dependent RCK in Equation (10). Our framework
paves the way to multiple intriguing areas of reasearch, piv-
otal to fully characterize RCK and make it applicable.

Figure 1: The relativity of causal knowledge states that
causal knowledge (CK) is subjective and interconnected
rather than objective and isolated. Multiple subjects
of/in the same system will develop multiple and differ-
ent instances of CK describing the system. Informally,
CK can be seen as a set of probability measures corre-
sponding to @ seeing, /¥ doing, and imagining §P. The



Grand Challenge #1: We need to scale causal reasoning to the size and
complexity of massive data.

Grand Challenge #2: We need to learn how to use real world data to
understand the consequences of complex actions and strategies
Grand Challenge #3: We need to learn the precise pathways between
actions and their consequences.

a5

Uncertainty



2050: Let’s imagine a world where we have
solved causal reasoning

* Al agents are everywhere
*|s this a better future?
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Evaluating the Environmental
Impact of Hyperscale Data
Centers in the U.S.

P
-\

Joint work with Gianluca Guidi, Tiziano Squartini,
Callaway Sprinkle, Jonathan Gilmour Kevin Butler, Eric Bell,
Scott Delaney, Falco J. Bargagli-Stoffi
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403 Hyperscale
data centers and
3318 energy

supplier power
plants in the US
(May 2024 to April
2025)

Data Centers
(dot size « Power Capacity)

I COAL
B GAS
N OIL
B OFSL
I OTHF
NUCLEAR
m BIOMASS
GEOTHERMAL
I HYDRO
SOLAR
WIND

Fig. 1. Geographic distribution of hyperscale data centers and power plants in the con-
tiguous US, overlaid with balancing authority regions. This figure shows the 403 hyperscale
data centers and 3,318 operational power plants included in our analysis for the study period
from May 2024 to April 2025. The map is displayed at the balancing authority (BA) level,
representing regions where electricity supply and demand are managed in real time. The size
of each hyperscale data center marker is proportional to its power capacity, while power plants
are colored by their primary fuel type.



Scientific questions

1. What are the electricity consumption, sources, and attributable
CO2 emissions of those 403 data centers?

2. What is the fuel mix of the power plants supplying electricity to
data centers?

3. Which states have the highest CO2 emissions attributable to data
centers?

Hint: With a data pipeline that can answer those questions, we make
informed decisions, such as: Where should | place a data center? Where
should | intervene on the power grid? How can we decarbonize this sector?



Materials and Methods

01

Dataset
Compilation and
Validation
Our analysis began

with compiling and
validating a dataset
of 403 HDC:s.

This was achieved
using private data
providers, web
scraping, and
satellite imagery.

02

Power Capacity
Estimation

Missing power
capacities were
estimated using a
Gradient Boosted
Regression Tree
model.

Evaluating the Environmental Impact of Hyperscale Data Centers in the U.S.

03

Electricity
Consumption
Calculation
Annual electricity

consumption was
calculated by
multiplying the
power capacity,
hours per year, and a
utilization rate of
66.3%.

The utilization rate
was determined
empirically.

04

CO2 Emissions
Estimation

Each HDC was
assigned to its
balancing authority
and corresponding
power plants.

CO2 emissions were
estimated using an
energy
generation-weighte
d model and EPA
emission factors.

05

Carbon Intensity
Computation

Carbon intensity
was computed as
grams of CO2
emitted per
kilowatt-hour
consumed.

This computation
was performed at
various geographic
levels.



Balancing Authorities

CO:z Bins (MtCO2)
[ ] 0.00-0.06
[ ] 0.06-0.85
[ ] 0.85-1.22
[] 1.22-2.60

[ 2.60-18.15
Bl 18.15-21.62

[ ] Nodata

Electricity Bins (TWh)
[ ] 0.05-0.64
[ ] 0.64-1.44
[] 1.44-2.12
B 2.12-5.81

B 5.81-31.08
Il 31.08-37.53

[ ] No data

CO2 Bins (MtCO-2)
[ ] 0.04-0.39
[ ] 0.39-1.05
[ ] 1.05-1.45
[] 1.45-3.01

[ 3.01-12.27
Bl 12.27-14.09

[ ] No data

Electricity Bins (TWh)
[ ] 0.09-1.23
[ ] 1.23-1.79
[ ] 1.79-2.73

] 2.73-4.78
B 4.78-21.88
Bl 21.88-24.46

[ ] No data

Fig. 2. Hyperscale Data Center electricity consumption and CO, emissions. (Left column,
A and C) The balancing authority (BA) region in which a hyperscale data center is located deter-
mines the mix of power plants that supply its electricity and thus its attributable emissions. See
fig.S.4.1 for BA regions and corresponding names. (Right column, B and D) Maps at the state
level show electricity consumption and emissions for which the hyperscale data centers within

the state are responsible for. Color bins represent percentile-based ranges: 0-20%, 20-40%,
40-60%, 60-80%, 80-99%, and 99—-100%.
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Fig. 4. Fuel mix of power plants supplying electricity for hyperscale US data centers. The
top bar represents the distribution of fuel types used by the power plants supplying electricity for
hyperscale US data centers in our study. The bottom bars show the largest balancing authorities
ranked by aggregated power capacity of hyperscale data centers (shown on the vertical axis), and
the amount of electricity produced per fuel type. See fig.S.4.1 for BA regions and corresponding
names.



Carbon Emissions Attributable to Hyperscale Data Centers

Total CO2 Emissions  Proportion of US Increase Since 2018 Highest Emissions by Significant State
from HDCs Carbon Emissions State Contributions
52.69M 1.10% 5x 24.46M 5.82M

The total CO2 emissions This represents approximately This is more than five times the Virginia had the highest CO2 Ohio followed with 5.82 million
attributable to the 403 1.10% of the total US carbon total emissions reported for emissions attributable to HDCs, metric tons of CO2 emissions
hyperscale data centers (HDCs) emissions from electricity HDCs in 2018. amounting to 24.46 million attributable to HDCs.
amounted to 52.69 million metric consumption in 2023. metric tons.

tons.

*52.69 M represents the annual CO, emissions of a

major U.S. city or a sizable portion of the U.S. aviation
industry.




", Carbon Intensity (gCO2/kWh)

0-377 gCO2/kWh (0-20%)
377-491 gCO2/kWh (20-40%)
491-551 gCO2/kWh (40-60%)
551-822 gCO2/kWh (60-80%)
822-985 gCO2/kWh (80-99%)
985-1016 gCO2/kWh (99-100%)
No data

/HELENN

Fig. 3. Carbon intensities of electricity consumption for hyperscale US data centers by
balancing authority. Carbon intensity is defined as the amount of carbon dioxide emissions
produced per unit of electricity generated, or consumed, and is expressed in units such as grams
of COy per kilowatt-hour (gCOy/kWh) for electricity generation. The figure shows HDCs’
carbon intensity for electricity consumption at the balancing authority level, in grams of CO»
per kWh. Color bins represent percentile-based ranges: 0-20%, 20-40%, 40-60%, 60-80%,
80-99%, and 99-100%.



Al as Eutopia or Dystopia?

1. —

The EPA’s 2024 regulatory analysis projects  The total CO2 emissions attributable to
that new standards for coal (and some new  the 403 hyperscale data centers (HDCs)

gas) power plants will cut about 55 million amounted to 52.69 million metric tons.
metric tons per year



Role of Causal Reasoning Al In Creating A Sustainable
Future

. Huge opportunity for
causal reasoning Al to
impact policy

. Still a lot of work to
develop Al that can
reasonate about
causality and with
uncertainity

. Responsible Al is playing
an increasing important
role




The world is facing enormous challenges use your
expertise to solve them!

Biodiversity “ Clean Energy




* Thank you
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* Interpretability
e Reproducibility
* Responsability

* Uncertainty quantification

Al systems require causal intelligence, which | broadly construe as the cognitive ability to learn and exploit causal
relationships. It has become increasingly clear that understanding causal intelligence is fundamental to advancing Al and
data science.

¢y HARVARD GLOBAL ADVISORY COUNCIL



2010s: Bayesian, Causal, and Machine Learning Synergy

01
Integration of Machine
Learning with Bayesian and
Causal Methods

Machine learning techniques were
integrated with Bayesian and causal
methods.

03

Addressing Complex Data
Challenges

Machine learning addressed complex
nonlinear patterns and
high-dimensional data challenges.

4 / Evolution and Integration of Bayesian, Causal, and Al Methods in Data Science

02

Innovations in Causal and
Machine Learning Techniques

Innovations included Generalized
Propensity Scores (GPS), Causal
Forests, Superlearner algorithms, and
double robustness approaches.

04

Harmonizing Frameworks
through Research

Significant technical progress was
made to harmonize ML with causal
and Bayesian frameworks, as
demonstrated by researchers like
Xiao, Falco, and Chanmin.



2000s: Integration of Bayesian and Causal Inference

1

Bridging Bayesian
and Causal

W\geproetgr?t%l outcome

framework bridged
Bayesian statistics with
causal inference.

4

Incorporating
Bayesian

Uncertainty
Bayesian uncerftainty was

incorporated into
confounder selection
processes.

2 3
Explicit Causal Flexible
Assumptions Confounding

Adjustment

Enaplgd Clearer, more Cornfounding adjustment
explicit assumptions became more flexible
about causal through propensity score
relationships. methods.

5

Limitations in
Complexity

Despite these advances,
applications were mostly limited
to relatively simple models.

3 / Evolution and Integration of Bayesian, Causal, and Al Methods in Data Science




